skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Bing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energy justice advocates for the equitable and accessible provision of energy services, mainly focusing on marginalized communities. Adopting machine learning in analyzing energy-related data can unintentionally reinforce social inequalities. This perspective highlights the stages in the machine learning process where biases may emerge, from data collection and model development to deployment. Each phase presents distinct challenges and consequences, ultimately influencing the fairness and accuracy of machine learning models. The ramifications of machine learning bias within the energy sector are profound, encompassing issues such as inequalities, the perpetuation of negative feedback loops, privacy concerns regarding, and economic impacts arising from energy burden and energy poverty. Recognizing and rectifying these biases is imperative for leveraging technology to advance society rather than perpetuating existing injustices. Addressing biases at the intersection of energy justice and machine learning requires a comprehensive approach, acknowledging the interconnectedness of social, economic, and technological factors. 
    more » « less